Experimental replacement of various bladder volumes with allogeneic tissue-engineered constructions

DOI: https://doi.org/10.29296/24999490-2023-06-08

N.V. Orlova(1), A.N. Muraviov(1, 2), A.А. Gorelova(1, 3), A.N. Remezova(1), T.I. Vinogradova(1),
A.I. Gorbunov(1), N.M. Yudintceva(4), Y.A. Nashchekina(4), P.K. Yablonsky(1, 3)
1-St. Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of Russia,
Ligovsky Ave., 2–4, St. Petersburg, 191036, Russian Federation;
2-Private educational institution of higher education “St. Petersburg Medical and Social Institute”,
Kondratyevsky Ave., 72, lit. A, St. Petersburg, 195272, Russian Federation;
3-St. Petersburg State University, Universitetskaya embankment, 7–9, St. Petersburg, 199034, Russian Federation;
4Institute of Cytology RAS, Tikhoretsky Ave., 4, St. Petersburg, 194064, Russian Federation

The results of experimental replacement of the bladder wall up to subtotal using multicomponent tissue-engineered structures are presented. Purpose. Development and experimental use of a tissue-engineered structure for replacing various volumes of the bladder wall. Material and methods. The original poly-L,L-lactide matrix is reinforced with silk fibroin. Mesenchymal cells were introduced into the constructs. 6 intact animals underwent filling cystometry. The maximum cystometric capacity was 11.2±0.97 ml. In these same 6 animals, the anesthetic capacity of the bladder was measured, which was 23.83±0.71 ml. 36 animals underwent reconstruction of the bladder using a prepared tissue-engineered construct after resection of the corresponding volume of the organ. Groups of 9 animals received bladder volumes of 5, 10, 15 and 20 ml. The observation period was 3 months. Results: According to computed tomography of the abdominal and pelvic organs (native study and with intravesical administration of a radiocontrast agent), 4, 8, 12 weeks after surgery, a bladder of physiological capacity is determined in all study groups, the implanted structure is visualized as a hyperintense signal in area of the apex of the bladder. no leakage of contrast agent is detected. Filling cystometry in 2 animals that underwent replacement of 20 ml of bladder volume (subtotal replacement) after 12 weeks showed that the capacity of the formed reservoir correlates with preoperative parameters. Macroscopically, the anastomosis zone is consistent in all groups of animals, the tissue-engineered structure is determined at the implantation site, lysis of the structure is noted by 12 weeks of observation with the preservation of small residual fragments at the implantation site. Conclusion. The experimental use of the developed tissue-engineered multicomponent structure turned out to be effective for replacing defects of the bladder wall of various volumes up to subtotal reconstruction. Further study of technologies for the use of tissue-engineered allogeneic constructs can significantly improve the results of treatment of urological pathologies for which obtaining autologous material is not possible.
Keywords: 
mesenchymal cells, tissue engineering, allogeneic stem cells, small bladder, cystoplasty, biodegradable polymers

Список литературы: 
  1. Campagnoli C., Roberts I.A., Kumar S., Bennett P.R., Bellantuono I., Fisk N.M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. The J. of the American Society of Hematology. 2001; 98 (8): 2396–402. DOI: 10.1182/blood. V98.8.2396.
  2. Gotherstrom C., Ringdén O., Westgren M., Tammik C., Le Blanc K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone marrow transplantation. 2003; 32 (3): 265–72. DOI: 10.1038/sj.bmt.1704111.
  3. Guillot P.V. Gotherstrom C., Chan J., Kurata H., Fisk N.M. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem cells. 2007; 25 (3): 646–54. DOI: 10.1634/stemcells.2006-0208.
  4. Da Silva Meirelles L., Chagastelles P.C., Nardi N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. of cell science. 2006; 119 (11): 2204–13. DOI: 10.1242/jcs.02932.
  5. Joshi L., Chelluri L.K., Gaddam S. Mesenchymal stromal cell therapy in MDR/XDR tuberculosis: a concise review. Archivum immunologiae et therapiae experimentalis. 2015; 63 (6): 427–33. DOI: 10.1007/s00005-015-0347-9.
  6. Caplan A.I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. of cellular physiology. 2007; 213 (2): 341–7. DOI: 10.1002/jcp.21200.
  7. Da Silva Meirelles L., Fontes A.M., Covas D.T., Caplan A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine&growth factor reviews. 2009; 20 (5–6): 419–27. DOI: 10.1016/j. cytogfr.2009.10.002.
  8. Morigi M., Rota C., Montemurro T., Montelatici E., Cicero V.L., Imberti B., Abbate M., Zoja C., Cassis P., Longaretti L., Rebulla P., Introna M., Capelli C., Benigni A., Remuzzi G., Lazzari L. Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem cells. 2010; 28 (3): 513–22. DOI: 10.1002/stem.293.
  9. Togel F., Hu Z., Weiss K., Isaac J., Lange C., Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. American Journal of Physiology-Renal Physiology. 2005; 289 (1): 31–42. DOI: 10.1152/ajprenal.00007.2005.
  10. Ikarashi K., Li B., Suwa M., Kawamura K., Morioka T., Yao J., Khan F., Uchiyama M., Oite T. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney international. 2005; 67 (5): 1925–33. DOI: 10.1111/j.1523-1755.2005.00291.x.
  11. Humphreys B.D., Bonventre J.V. Mesenchymal stem cells in acute kidney injury. Annu. Rev. Med. 2008; 59: 311–25. DOI: 10.1146/annurev.med.59.061506.154239.
  12. Lin F. Renal repair: role of bone marrow stem cells. Pediatric Nephrology 2008; 23 (6): 851–61. DOI: 10.1007/s00467-007-0634-8
  13. Muraviov A.N., Vinogradova T.I., Remezova A.N., Ariel B.M., Gorelova A.A., Orlova N.V., Yudintceva N.M., Esmedliaeva D.S., Dyakova M.E., Dogonadze M.Z., Zabolotnyh N.V., Garapach I.A., Maslak O.S., Kirillov Y.A., Timofeev S. E., Krylova Y.S., Yablonskiy P.K. The use of mesenchymal stem cells in the complex treatment of kidney tuberculosis (experimental study). Biomedicines. 2022, 10, 3062. https://DOI.org/10.3390/biomedicines10123062.
  14. Горелова А.А., Муравьев А.Н., Виноградова Т.И., Горелов А.И., Юдинцева Н.М., Орлова Н.В., Нащекина Ю.А., Хотин М.Г., Лебедев А.А., Пешков Н.О., Яблонский П.К. Тканеинженерные технологии в реконструкции уретры. Медицинский альянс. 2018; 3: 75–82.
  15. [Gorelova A., Muraviov A., Vinogradova T., Gorelov A., Yudintceva N., Orlova N., Nashchekina Y., Khotin M., Lebedev A., Peshkov N., Yablonskiy P. Tissue engineering technologies in the reconstruction of the urethra. Medicinskij al’yans. 2018; 3: 75–82 (In Russ.)].
  16. 15. Орлова Н.В., Муравьев А.Н., Виноградова Т.И., Блюм Н.М., Семенова Н.Ю., Юдинцева Н.М., Нащекина Ю.А., Блинова М.И., Шевцов M.A., Витовская M.Л., Заболотных Н.В., Шейхов М.Г. Экспериментальная реконструкция мочевого пузыря кролика с использованием аллогенных клеток различного тканевого происхождения. Медицинский альянс. 2016; 1: 49–51.
  17. [Orlova N.V., Murav’ev A.N., Vinogradova T.I., Blyum N.M.,. Semenova N.Yu, Yudintseva N.M., Nashchekina Yu.A., Blinova M.I.,. Shevtsov M.A, Vitovskaya M.L., Zabolotnykh N.V., Sheikhov M.G. Experimental reconstruction of the rabbit bladder using allogeneic cells of various tissue origin. Medicinskij al’jans. 2016; 1: 49–51 (In Russ.)].
  18. Yudintceva N.M., Nashchekina Y.A., Blinova M.I., Orlova N.V., Muraviov A.N., Vinogradova T.I., Sheykhov M.G., Shapkova E.Y., Emeljannikov D.V., Yablonskii P.K., Samusenko I.A., Mikhrina A.L., Pakhomov A.V., Shevtsov M.A. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticlelabeled allogenic bone marrow stromal cells. International J. of nanomedicine. 2016; 11: 4521. DOI: 10.2147/IJN. S111656.
  19. Yudintceva N.M., Nashchekina Y.A., Mikhailova N.A., Vinogradova T.I., Yablonskii P.K., Gorelova A. A., Muraviov A.N., Gorelov A.I., Samusenko I.A., Nikolaev B.P., Yakovleva L.Y., Shevtsov M.A. Urethroplasty with a bilayered poly-D, L-lactide-co-ε-caprolactone scaffold seeded with allogenic mesenchymal stem cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020; 108 (3): 1010–21. DOI: 10.1002/jbm.b.34453.