VDAC1-DEPENDENT MITOCHONDRIAL EFFECTS OF COMPOUNDS CONTAINING THE 4-HYDROXY-3,5-DI-TRETBUTYL PHENYL SUBSTITUENT IN EXPERIMENTAL FOCAL CEREBRAL ISCHAEMIA

DOI: https://doi.org/10.29296/24999490-2023-03-08

Pozdnyakov
Pyatigorsk Medical and Pharmaceutical Institute, Kalinin Ave., 11. Pyatigorsk, Stavropol Region, 357532, Russian Federation

Introduction. Ischemic stroke is one of the most common causes of mortality and primary disability. The treatment of ischemic stroke, especially its complications, includes neuroprotective agents among which correctors of mitochondrial dysfunction stand out. Aim of the study. To evaluate VDAC1-dependent mitochondrial effects of compounds containing 4-hydroxy-3,5-di-tretbutyl phenyl substituent in experimental brain ischemia. Material and methods. Brain ischemia was modeled in Wistar rats by irreversible thermocoagulation of middle cerebral artery. After ischemia modeling, the tested compounds (7 objects) and reference drug ethylmethylhydroxypyridine succinate were administered orally (once in day) for 72 hours. After that time, the changes in concentration of ATP, apoptosis-inducing factor, caspase-3, mitochondrial hydrogen peroxide and VDAC1 in brain tissue were assessed in animals. Results. In a study, were shown that the administration of studied compounds in animals with focal ischemia increased the ATP concentration while decreasing the content of mitochondrial hydrogen peroxide and the activity of caspase-dependent and caspase-independent apoptosis reactions. There was also found a decrease of VDAC1 concentration in animals treated with the analyzed compounds, which correlated with the changes of ATP concentration (r=0,89714), apoptosis-inducing factor (r=0,92367) and mitochondrial hydrogen peroxide (r=0,87629). Conclusion. It was concluded that mitochondrial effects of compounds containing 4-hydroxy-3,5-ditrebutyl phenyl which manifested as decreased generation of mitochondrial reactive oxygen species, decreased intensity of reactions of internal apoptosis pathway and increased ATP concentration, were connected with the effect of these compounds on VDAC1 channel activity.
Keywords: 
schemic stroke, neuroprotection, mitochondrial dysfunction, VDAC1

Список литературы: 
  1. Mendelson S.J., Prabhakaran S. Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke: A Review. JAMA. 2021; 325 (11): 1088–98. https://doi.org/10.1001/jama.2020.26867
  2. Jolugbo P., Ariëns R.AS. Thrombus Composition and Efficacy of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. Stroke. 2021; 52 (3): 1131–42. https://doi.org/ 10.1161/STROKEAHA.120.032810.
  3. Chamorro Á., Dirnagl U., Urra X., Planas A.M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016; 15 (8): 869–81. https://doi.org/10.1016/S1474-4422(16)00114-9
  4. Hosseini L., Karimipour M., Seyedaghamiri F. Intranasal administration of mitochondria alleviated cognitive impairments and mitochondrial dysfunction in the photothrombotic model of mPFC stroke in mice. J. Stroke Cerebrovasc Dis. 2022; 31 (12): 106801. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106801
  5. Katz A., Brosnahan S.B., Papadopoulos J., Parnia S., Lam J.Q. Pharmacologic neuroprotection in ischemic brain injury after cardiac arrest. Ann N Y Acad Sci. 2022; 1507 (1): 49–59. https://doi.org/10.1111/nyas.14613
  6. Fields M., Marcuzzi A., Gonelli A., Celeghini C., Maximova N., Rimondi E. Mitochondria-Targeted Antioxidants, an Innovative Class of Antioxidant Compounds for Neurodegenerative Diseases: Perspectives and Limitations. Int J. Mol. Sci. 2023; 24 (4): 3739. https://doi.org/10.3390/ijms24043739
  7. Поздняков Д. И., Зацепина Е. Е., Арльт А. В. Влияние соединений, содержащих 4-гидрокси-3,5-ди-трет-бутилфенильную группировку, на активность митохондриальных ферментов и содержание тау-белка в гиппокампе крыс на экспериментальной модели болезни Альцгеймера. Экспериментальная и клиническая фармакология. 2022; 85 (6): 9–13. https://doi.org/10.30906/0869-2092-2022-85-6-9-13.
  8. [Pozdnyakov D.I., Zatsepina E. E., Arlt A.V. Effect of compounds containing 4-hydroxy-3,5-di-tert-butylphenyl group on mitochondrial enzyme activity and tau-protein content in rat hippocampus in experimental model of Alzheimer’s disease. Experimental and Clinical Pharmacology. 2022; 85 (6): 9–13. https://doi.org/10.30906/0869-2092-2022-85-6-9-13. (in Russian)]
  9. Gasanoff E.S., Yaguzhinsky L.S., Garab G. Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease. Cells. 2021; 10 (7): 1721. https://doi.org/10.3390/cells10071721.
  10. Kulkarni C.A., Fink B.D., Gibbs B.E., Chheda P.R., Wu M., Sivitz W.I., Kerns R.J. A Novel Triphenylphosphonium Carrier to Target Mitochondria without Uncoupling Oxidative Phosphorylation. J. Med. Chem. 2021; 64 (1): 662–76. https://doi.org/10.1021/acs.jmedchem.0c01671.
  11. Mannella C.A. VDAC-A Primal Perspective. Int. J. Mol. Sci. 2021; 22 (4): 1685. https://doi.org/10.3390/ijms22041685
  12. Karachitos A., Grabiński W., Baranek M., Kmita H. Redox-Sensitive VDAC: A Possible Function as an Environmental Stress Sensor Revealed by Bioinformatic Analysis. Front Physiol. 2021; 12: 750627. https://doi.org/10.3389/fphys.2021.750627.
  13. Tamura A., Graham D.I., McCulloch J., Teasdale G.M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J. Cereb Blood Flow Metab. 1981; 1 (1): 53–60.
  14. Audi S.H., Friedly N., Dash R.K., Beyer A.M., Clough A.V., Jacobs E.R. Detection of hydrogen peroxide production in the isolated rat lung using Amplex red. Free Radic Res. 2018;52(9):1052-1062. https://doi.org/10.1080/10715762.2018.1511051
  15. Kaur M.M., Sharma D.S. Mitochondrial repair as potential pharmacological target in cerebral ischemia. Mitochondrion. 2022; 63: 23–31. https://doi.org/10.1016/j.mito.2022.01.001.
  16. Perez-Pinzon M.A., Stetler R.A., Fiskum G. Novel mitochondrial targets for neuroprotection. J Cereb Blood Flow Metab. 2012; 32 (7): 1362–76. https://doi.org/10.1038/jcbfm.2012.32.
  17. Gueven N., Nadikudi M., Daniel A., Chhetri J. Targeting mitochondrial function to treat optic neuropathy. Mitochondrion. 2017; 36: 7–14. https://doi.org/10.1016/j.mito.2016.07.013.
  18. Rosencrans W.M., Rajendran M., Bezrukov S.M., Rostovtseva T.K. VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium. 2021; 94: 102356. https://doi.org/10.1016/j.ceca.2021.102356.
  19. Rovini A., Gurnev P.A., Beilina A., Queralt-Martin M., Rosencrans W., Cookson M.R., Bezrukov S.M., Rostovtseva T.K. Molecular mechanism of olesoxime-mediated neuroprotection through targeting α-synuclein interaction with mitochondrial VDAC. Cell. Mol. Life Sci. 2020; 77 (18): 3611–26. https://doi.org/10.1007/s00018-019-03386-w.
  20. Sasaki K., Donthamsetty R., Heldak M., Cho Y.E., Scott B.T., Makino A. VDAC: old protein with new roles in diabetes. Am. J. Physiol Cell. Physiol. 2012; 303 (10): 1055–60. https://doi.org/10.1152/ajpcell.00087.2012.
  21. Hoppe J., Schäfer R., Hoppe V., Sachinidis A. ATP and adenosine prevent via different pathways the activation of caspases in apoptotic AKR-2B fibroblasts. Cell Death Differ. 1999; 6 (6): 546–56. https://doi.org/ 10.1038/sj.cdd.4400518