CLINICAL AND MICROSCOPIC ANALYSIS OF CELLULAR-MOLECULAR COMMUNICATIONS IN FOCAL CORTICAL DYSPLASIA IIIс

DOI: https://doi.org/10.29296/24999490-2023-03-06

L.B. Mitrofanova(1), Z.M. Rasulov(1), O.M. Vorobieva(1), A.N. Gorshkov(1, 2), K.A. Sterkhova(1), A.Yu. Ulitin(1),
1-FSBI «NMIC named after V.A. Almazov», Akkuratova str., 2, St. Petersburg, 197341, Russian Federation;
2-FGBU «A.A. Smorodintsev Influenza Research Institute», Prof. Popov str., 15/17, St. Petersburg, 197022, Russian Federation

Cortical dyslamination with neuronal dysmorphism that occurs adjacent to an arteriovenous malformation (AVM) and is accompanied by epilepsy (E) is classified as FCD IIIc. Its etiology and pathogenesis have yet to be determined. Objective: to clarify the cellular composition and expression of various receptors in the AVM and its perifocal zone with and without FCD IIIc Material and methods. A morphological study of the surgical material of the brain of 14 patients with FCD IIIc and 13 patients with AVM without E was carried out using antibodies to: Ang1, Ang2, Ki-67, MHC1, CD34, NeuroD1, NG2, CD117, PrgRc, ErgRc, SSTR2, GH, SMA, GFAP and electron microscopy of the AVM of 1 patient with FCD IIIc. Results. There were CD34+ endotheliocytes, CD34+/CD117+/NeuroD1+ telocytes, SMA+ smooth muscle cells, NG2+ pericytes in the walls of AVM vessels with E and without it. A scar zone of CD117+-telocytes forming a 3D structure was determined in 50% of patients with FCD IIIc and in 46% with AVMs. Electron microscopy confirmed the presence of pericytes and telocytes in the small AVM vessels. In no case was the expression of PrgRc, ErgRc, and GH, while SSTR2 was detected in vascular cells of all AVMs and the perifocal zone. The expression level of MHC1 was statistically significantly higher in the AVM vessels than around the vessels (p
Keywords: 
arteriovenous malformation, epilepsy, telocytes and pericytes, somatostatin receptors

Список литературы: 
  1. Schimmel K., Ali M.K., Tan S.Y., Teng J., Do H.M., Steinberg G.K., Stevenson D.A., Spiekerkoetter E. Arteriovenous Malformations–Current Understanding of the Pathogenesis with Implications for Treatment. International J. of Molecular Sciences. 2021; 22 (16): 9037. DOI: 10.3390/ijms22169037
  2. Fleetwood I.G., Steinberg G.K.. Arteriovenous malformations. Lancet. 2002; 359 (9309): 863–73. DOI: 10.1016/S0140-6736(02)07946-1
  3. Aboukaïs R., Vinchon M., Quidet M., Bourgeois P., Leclerc X., Lejeune J.P. Reappearance of arteriovenous malformations after complete resection of ruptured arteriovenous malformations: true recurrence or false-negative early postoperative imaging result? J. Neurosurg. 2017; 126 (4): 1088–93. DOI: 10.3171/2016.3.JNS152846
  4. Blümcke I., Thom M., Aronica E., Armstrong D.D., Vinters H.V., Palmini A., Jacques T.S., Avanzini G., Barkovich A.J., Battaglia G., Becker A., Cepeda C., Cendes F., Colombo N., Crino P., Cross J.H., Delalande O., Dubeau F., Duncan J., Guerrini R., Kahane P., Mathern G., Najm I., Ozkara C., Raybaud C., Represa A., Roper S.N., Salamon N., Schulze-Bonhage A., Tassi L., Vezzani A., Spreafico R. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011; 52 (1): 158–74. DOI: 10.1111/j.1528-1167.2010.02777.x
  5. Popescu B.O., Gherghiceanu M., Kostin S., Ceafalan L., Popescu L.M. Telocytes in meninges and choroid plexus. Neuroscience letters. 2012; 516 (2): 265–9. DOI:10.1016/j.neulet.2012.04.006
  6. Митрофанова Л.Б., Хазратов А.О., Красношлык П.В., Воробьева О.М., Горшков А.Н., Гуляев Д.А. Морфологическое исследование телоцитов в различных отделах нормального головного мозга взрослого человека. Medline. Российский биомедицинский журнал. 2018; 19 (1): 281–306.
  7. [Mitrofanova L.B., Khazratov A.O., Krasnoshlyk P.V., Vorobieva O.M., Gorshkov A.N., Gulyaev D.A. Morphological study of telocytes in various parts of the normal adult brain. Medline. Russian biomedical J. 2018; 19 (1): 281–306 (in Russian)]
  8. Pataskar A., Jung J., Smialowski P., Noack F., Calegari F., Straub T., Tiwari V.K. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. The EMBO J. 2016; 35 (1): 24–45. DOI: 10.15252/embj.201591206
  9. Митрофанова Л.Б., Хазратов А.О., Гальковский Б.Э., Горшков А.Н., Гуляев Д.А. Телоциты в сердце и головном мозге человека в норме и при патологии Medline. Российский биомедицинский журнал. 2020; 21 (84): 1074–88.
  10. [Mitrofanova L.B., Khazratov A.O., Galkovskii B.E., Gorshkov A.N., Gulyaev D.A. Telocytes in the human heart and brain in normal and pathological conditions Medline. Russian biomedical J. 2020; 21 (84): 1074–88 (in Russian)]
  11. Mitrofanova L., Hazratov A., Galkovsky B., Gorshkov A., Bobkov D., Gulyaev D., Shlyakhto E. Morphological and immunophenotypic characterization of perivascular interstitial cells in human glioma: Telocytes, pericytes, and mixed immunophenotypes. Oncotarget. 2020; 11 (4): 322–46. DOI: 10.18632/oncotarget.27340
  12. Bei Y., Wang F., Yang C., Xiao J. Telocytes in regenerative medicine. J. Cell. Mol. Med. 2015; 19 (7): 1441–54. DOI: 10.1111/jcmm.12594.
  13. Митрофанова Л.Б., Бобков Д.Е., Оганесян М.Г., Карпушев А.В., Кошевая Е.Г. Исследование электрофизиологических свойств телоцитов атриовентрикулярного узла и перифокальной зоны синусного узла у человека и свиньи. Российский кардиологический журнал. 2020; 25 (12): 3927.
  14. [Mitrofanova L.B., Bobkov D.E., Oganesyan M.G., Karpushev A.V., Koshevaya E.G. Study of the electrophysiological properties of telocytes of the atrioventricular node and the perifocal zone of the sinus node in humans and pigs. Russian J. of cardiology. 2020; 25 (12): 3927 (in Russian)]
  15. Winkler E.A., Birk H., Burkhardt J.K., Chen X., Yue J.K., Guo D., Rutledge W.C., Lasker G.F., Partow C., Tihan T., Chang E.F., Su H., Kim H., Walcott B.P., Lawton M.T. Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J. Neurosurg. 2018; 129 (6): 1464–74. DOI: 10.3171/2017.6.JNS17860
  16. Nadeem T., Bogue W., Bigit B., Cuervo H. Deficiency of Notch signaling in pericytes results in arteriovenous malformations. JCI Insight. 2020; 5 (21): e125940. DOI: 10.1172/jci.insight.125940
  17. Murphy P.A., Kim T.N., Huang L., Nielsen C.M., Lawton M.T., Adams R.H., Schaffer C.B., Wang R.A. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci USA. 2014; 111 (50): 18007–12. DOI: 10.1073/pnas.141531611110.1172/jci.insight.125940
  18. Nielsen C.M., Cuervo H., Ding V.W., Kong Y., Huang E.J., Wang R.A. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice. Development 2014; 141 (19): 3782–92. DOI: 10.1242/dev.108951
  19. Nadeem T., Bommareddy A., Bolarinwa L., Cuervo H. Pericyte dynamics in the mouse germinal matrix angiogenesis. FASEB J. 2022; 36 (6): e22339. DOI: 10.1096/fj.202200120R
  20. Selhorst S., Nakisli S., Kandalai S., Adhicary S., Nielsen C.M. Pathological pericyte expansion and impaired endothelial cell-pericyte communication in endothelial Rbpj deficient brain arteriovenous malformation. Front Hum Neurosci. 2022; 16: 974033. DOI: 10.3389/fnhum.2022.974033
  21. Chapman A.D., Selhorst S., LaComb J., LeDantec-Boswell A., Wohl T.R., Adhicary S., Nielsen C.M. Endothelial Rbpj Is Required for Cerebellar Morphogenesis and Motor Control in the Early Postnatal Mouse Brain. Cerebellum. 2022. DOI: 10.1007/s12311-022-01429-w
  22. Clatterbuck R.E., Eberhart C.G., Crain B.J., Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations J Neurol Neurosurg Psychiatry. 2001; 71: 188–92. DOI: 10.1136/jnnp.71.2.188
  23. Jia Y.C., Fu J.Y., Huang P., Zhang Z.P., Chao B., Bai J. Characterization of Endothelial Cells Associated with Cerebral Arteriovenous Malformation. Neuropsychiatr Dis Treat. 2020; 16: 1015–22. DOI: 10.2147/NDT.S248356
  24. Kulungowski A.M., Hassanein A.H., Nosé V., Fishman S.J., Mulliken J.B., Upton J., Zurakowski D., DiVasta A.D., Greene A.K. Expression of androgen, estrogen, progesterone, and growth hormone receptors in vascular malformations. Plast Reconstr Surg. 2012; 129 (6): 919–24. DOI: 10.1097/PRS.0b013e31824ec3fb
  25. Duyka L.J., Fan C.Y., Coviello-Malle J.M., Buckmiller L., Suen J.Y. Progesterone Receptors Identified in Vascular Malformations of the Head and Neck. Otolaryngology–Head and Neck Surgery. 2009; 141 (4): 491–5. DOI: 10.1016/j.otohns.2009.06.012
  26. Zhang J., Abou-Fadel J.S. Calm the raging hormone – a new therapeutic strategy involving progesterone-signaling for hemorrhagic CCMs. Vessel Plus. 2021; 5: 48. DOI: 10.20517/2574-1209.2021.64
  27. Katz S.E., Klisovic D.D., O’Dorisio M.S., Lynch R., Lubow M. Expression of Somatostatin Receptors 1 and 2 in Human Choroid Plexus and Arachnoid Granulations: Implications for Idiopathic Intracranial Hypertension. Arch Ophthalmol. 2002; 120 (11): 1540–3. DOI: 10.1001/archopht.120.11.1540
  28. Stumm R.K., Zhou C., Schulz S., Endres M., Kronenberg G., Allen J.P., Tulipano G., Höllt V. Somatostatin receptor 2 is activated in cortical neurons and contributes to neurodegeneration after focal ischemia. J. Neurosci. 2004; 24 (50): 11404–15. DOI: 10.1523/JNEUROSCI.3834-04.2004
  29. Martel G., Dutar P., Epelbaum J., Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne). 2012; 3: 154. DOI: 10.3389/fendo.2012.00154
  30. Aourz N., De Bundel D., Stragier B., Clinckers R., Portelli J., Michotte Y., Smolders I. Rat hippocampal somatostatin sst3 and sst4 receptors mediate anticonvulsive effects in vivo: indications of functional interactions with sst2 receptors. Neuropharmacology. 2011; 61 (8): 1327–33. DOI: 10.1016/j.neuropharm.2011.08.003
  31. Gomes-Porras M., Cárdenas-Salas J., Álvarez-Escolá C. Somatostatin Analogs in Clinical Practice: a Review. Int J. Mol. Sci. 2020; 21 (5): 1682. DOI: 10.3390/ijms21051682
  32. Ćorović A., Wall C., Nus M., Gopalan D., Huang Y., Imaz M., Zulcinski M., Peverelli M., Uryga A., Lambert J., Bressan D., Maughan R.T., Pericleous C., Dubash S., Jordan N., Jayne D.R., Hoole S.P., Calvert P.A., Dean A.F., Rassl D., Barwick T., Iles M., Frontini M., Hannon G., Manavaki R., Fryer T.D., Aloj L., Graves M.J., Gilbert F.J., Dweck M.R., Newby D.E., Fayad Z.A., Reynolds G., Morgan A.W., Aboagye E.O., Davenport A.P., Jørgensen H.F., Mallat Z., Bennett M.R., Peters J.E., Rudd J.H.F., Mason J.C., Tarkin J.M. Somatostatin Receptor PET/MR Imaging of Inflammation in Patients With Large Vessel Vasculitis and Atherosclerosis. J. Am. Call. Cardiol. 2023; 81 (4): 336–54. DOI: 10.1016/j.jacc.2022.10.034